Agda大序数(8) ε层级, ζ层级, η层级
交流Q群: 893531731
目录: NonWellFormed.html
本文源码: Epsilon.lagda.md
高亮渲染: Epsilon.html
{-# OPTIONS --without-K --safe --experimental-lossy-unification #-} {-# OPTIONS --no-qualified-instances #-} module NonWellFormed.Epsilon where
前置
open import NonWellFormed.Ordinal open NonWellFormed.Ordinal.≤-Reasoning open import NonWellFormed.WellFormed hiding (wf⇒wf) open import NonWellFormed.Function using (normal; wf-preserving; zero-increasing; suc-increasing) open import NonWellFormed.Recursion using (rec_from_by_) open import NonWellFormed.Arithmetic open import NonWellFormed.Tetration using (_^^ω; _^^ω[_]; ^^≈^^[]ω; ^^-stuck; ^-^^[]-comm) open import NonWellFormed.Fixpoint open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
引理
本小节统一列出本章所需关于 ω ^_
的一些平凡的引理.
ω^-normal : normal (ω ^_) ω^-normal = ^-normal ω ω^-wfp : wf-preserving (ω ^_) ω^-wfp = ^-wfp ω-wellFormed ω^-zero-incr : zero-increasing (ω ^_) ω^-zero-incr = begin-strict zero <⟨ <s ⟩ ⌜ 1 ⌝ ≡⟨⟩ ω ^ zero ∎ ω^-suc-incr : suc-increasing (ω ^_) ω^-suc-incr α with ≡z⊎>z α ... | inj₁ refl = begin-strict ⌜ 1 ⌝ <⟨ n<ω ⟩ ω ≈˘⟨ ^-identityʳ ω ⟩ ω ^ ⌜ 1 ⌝ ∎ ... | inj₂ α>0 = begin-strict suc α ≤⟨ +-monoʳ-≤ α (<⇒s≤ α>0) ⟩ α + α ≈˘⟨ α*2≈α+α α ⟩ α * ⌜ 2 ⌝ <⟨ *-monoʳ-< α ⦃ α>0 ⦄ (n<ω {2}) ⟩ α * ω ≤⟨ *-monoˡ-≤ ω (^-incrˡ-≤ α ω) ⟩ ω ^ α * ω ∎
ε层级
ε
定义为对函数 ω ^_
的不动点的枚举. 由于 ω ^_
是序数嵌入, 所以 ε
也是序数嵌入, 且对任意 α
有 ω ^ ε α ≈ ε α
.
ε : Ord → Ord ε = (ω ^_) ′ ε-normal : normal ε ε-normal = ′-normal ω^-normal ε-fp : ∀ α → ε α isFixpointOf (ω ^_) ε-fp α = ′-fp ω^-normal α
由 ω ^_
以及 _′
的相关引理可证 ε
保良构.
ε-wfp : wf-preserving ε ε-wfp = ′-wfp ω^-normal ω^-zero-incr ω^-suc-incr ω^-wfp
ε zero
是无穷层的 ω 指数塔.
ε_{0} = ω^{ω^{.^{.^{.^{ω}}}}}
ε₀ : ε zero ≈ ω ^^ω ε₀ = begin-equality ε zero ≈˘⟨ ε-fp zero ⟩ ω ^ ω ^^ω[ zero ] ≈⟨ ^-^^[]-comm ω zero ω ⟩ ω ^^ω[ ω ^ zero ] ≡⟨⟩ ω ^^ω[ ⌜ 1 ⌝ ] ≈˘⟨ ^^≈^^[]ω ω ⌜ 1 ⌝ n≤ω ⦃ ≤-refl ⦄ ⟩ ω ^^ω ∎
后继的情况:
ε_{α+1} = ω^{ω^{.^{.^{.^{ε_{α}+1}}}}}
_ : ∀ α → ε (suc α) ≡ ω ^^ω[ suc (ε α) ] _ = λ α → refl
极限的情况:
ε_{γ} = \sup \{ε_{γ[0]},ε_{γ[1]},ε_{γ[2]},...\}
_ : ∀ f → ε (lim f) ≡ lim (λ n → ε (f n)) _ = λ f → refl
ε
的另一种表示
可以证明对任意良构 α
有 ε (suc α) ≈ ε α ^^ ω
.
ζ层级
由于 ε
是序数嵌入, 它也存在不动点, 这些不动点组成了 ζ层级, 且 ζ
也是序数嵌入.
ζ : Ord → Ord ζ = ε ′ ζ-normal : normal ζ ζ-normal = ′-normal ε-normal
对任意 α
有 ε (ζ α) ≈ ζ α
.
ζ-fp : ∀ α → ζ α isFixpointOf ε ζ-fp α = ′-fp ε-normal α
ζ
保良构.
ε-zero-incr : zero-increasing ε ε-zero-incr = ′-zero-incr ω^-zero-incr ε-suc-incr : suc-increasing ε ε-suc-incr = ′-suc-incr ω^-normal ω^-suc-incr ζ-wfp : wf-preserving ζ ζ-wfp = ′-wfp ε-normal ε-zero-incr ε-suc-incr ε-wfp
ζ_0 = ε_{ε_{._{._{ε_0}}}}
_ : ζ zero ≡ ε ⋱ zero _ = refl
ζ_{α+1} = ε_{ε_{._{._{{ζ_α}+1}}}}
_ : ∀ α → ζ (suc α) ≡ ε ⋱ suc (ζ α) _ = λ α → refl
ζ_{γ} = \sup \{ζ_{γ[0]},ζ_{γ[1]},ζ_{γ[2]},...\}
_ : ∀ f → ζ (lim f) ≡ lim (λ n → ζ (f n)) _ = λ f → refl
η层级
由于 ζ
是序数嵌入, 它也存在不动点, 这些不动点组成了 η层级, 且 η
也是序数嵌入.
η : Ord → Ord η = ζ ′ η-normal : normal η η-normal = ′-normal ζ-normal
对任意 α
有 ζ (η α) ≈ η α
.
η-fp : ∀ α → η α isFixpointOf ζ η-fp α = ′-fp ζ-normal α
η
的保良构.
ζ-zero-incr : zero-increasing ζ ζ-zero-incr = ′-zero-incr ε-zero-incr ζ-suc-incr : suc-increasing ζ ζ-suc-incr = ′-suc-incr ε-normal ε-suc-incr η-wfp : wf-preserving η η-wfp = ′-wfp ζ-normal ζ-zero-incr ζ-suc-incr ζ-wfp
η_0 = ζ_{ζ_{._{._{ζ_0}}}}
_ : η zero ≡ ζ ⋱ zero _ = refl
η_{α+1} = ζ_{ζ_{._{._{{ζ_α}+1}}}}
_ : ∀ α → η (suc α) ≡ ζ ⋱ suc (η α) _ = λ α → refl
η_{γ} = \sup \{η_{γ[0]},η_{γ[1]},η_{γ[2]},...\}
_ : ∀ f → η (lim f) ≡ lim (λ n → η (f n)) _ = λ f → refl
符号是有限的, 不可能这样一直命名下去. 但是, 将 ω ^_
, ε
, ζ
, η
分别看作第0, 1, 2, 3层级, 可以将其推广到任意序数层级, 从而得到著名的 Veblen 函数, 我们将在下一章介绍.