Agda大序数(8*) ε的另一种表示

Agda大序数(8*) ε的另一种表示

交流Q群: 893531731
目录: NonWellFormed.html
本文源码: Epsilon/Alternative.lagda.md
高亮渲染: Epsilon.Alternative.html

{-# OPTIONS --without-K --safe --experimental-lossy-unification #-}

module NonWellFormed.Epsilon.Alternative where

前置

open import NonWellFormed.Ordinal
open NonWellFormed.Ordinal.≤-Reasoning
open import NonWellFormed.WellFormed
open import NonWellFormed.Arithmetic
open import NonWellFormed.Tetration using (_^^[_]_; _^^ω; _^^ω[_]; ^^≈^^[]ω)
open import NonWellFormed.Fixpoint.Lower using (π; π-fp; π≈)
open import NonWellFormed.Epsilon using (ε; ε-normal; ε-fp; ε-wfp)

open import Data.Nat as  using (; zero; suc)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)

准备工作

我们一般化 ε 的下标, 并建立 εα>1 实例.

private variable
  α : Ord

εα≥ω : ε α  ω
εα≥ω {α} =  begin
  ω         ≈˘⟨ ^-identityʳ _ 
  ω ^  1  ≤⟨ ≤f⇒≤l {n = 2} ≤-refl 
  ε zero    ≤⟨ proj₁ ε-normal z≤ 
  ε α       

instance
  εα>1 : ε α >  1 
  εα>1 {α} =  begin-strict
     1      <⟨ n<ω 
    ω         ≤⟨ εα≥ω 
    ε α       

ε的另一种表示

观察序列 ω ^^[ suc (ε α) ] ⌜_⌝ 的前几项有

εα+1=εα+1{ε_α}+1 = {ε_α}+1

_ : ω ^^[ suc (ε α) ] zero  suc (ε α)
_ = refl

 

ωεα+1=εα×ωω^{{ε_α}+1} = ε_α × ω

ω^^[sε]1 : ω ^^[ suc (ε α) ]  1   ε α * ω
ω^^[sε]1 {α} =  begin-equality
  ω ^ ε α * ω   ≈⟨ *-congʳ {ω} (ε-fp α) 
  ε α * ω       

 

ωωεα+1=εαωω^{ω^{{ε_α}+1}} = {ε_α}^ω

ω^^[sε]2 : ω ^^[ suc (ε α) ]  2   ε α ^ ω
ω^^[sε]2 {α} =                begin-equality
  ω ^ ω ^^[ suc (ε α) ]  1  ≈⟨ ^-congˡ  n≤ω  ω^^[sε]1 
  ω ^ (ε α * ω)               ≈˘⟨ ^-*-assoc _ _ _ 
  (ω ^ ε α) ^ ω               ≈⟨ ^-congʳ {ω} (ε-fp α) 
  ε α ^ ω                     

 

ωωωεα+1=εαεαωω^{ω^{ω^{{ε_α}+1}}} = {ε_α}^{{ε_α}^ω}

ω^^[sε]3 : ω ^^[ suc (ε α) ]  3   ε α ^ (ε α ^ ω)
ω^^[sε]3 {α} =                begin-equality
  ω ^ ω ^^[ suc (ε α) ]  2  ≈⟨ ^-congˡ  n≤ω  (begin-equality
      ω ^^[ suc (ε α) ]  2  ≈⟨ ω^^[sε]2 
      ε α ^ ω                 ≈˘⟨ π₁ 
      π  1                  ≈˘⟨ π-fp _ 
      ε α * π  1            ) 
  ω ^ (ε α * π  1 )         ≈˘⟨ ^-*-assoc _ _ _ 
  (ω ^ ε α) ^ π  1          ≈⟨ ^-congʳ {π  1 } (ε-fp α) 
  ε α ^ π  1                ≈⟨ ^-congˡ π₁ 
  ε α ^ (ε α ^ ω)              where
    π₁ =                      begin-equality
      π  1                  ≈⟨ π≈ _ 
      ε α ^ ω *  1          ≈⟨ *-identityʳ _ 
      ε α ^ ω                 

归纳到任意 n 项.

module _ (wfα : WellFormed α) where

  ω^^[sε]n :  n  ω ^^[ suc (ε α) ]  suc (suc n)   ε α ^^[ ω ]  suc n 
  ω^^[sε]n zero    = ω^^[sε]2
  ω^^[sε]n (suc n) =
    let ssn = ω ^^[ suc (ε α) ]  suc (suc n)  in
    let sn  = ω ^^[ suc (ε α) ]  suc n  in
                                    begin-equality
    ω ^ ssn                         ≈⟨ ^-congˡ  n≤ω  (begin-equality
      ssn                           ≡⟨⟩
      ω ^ sn                        ≈⟨ ^-congˡ  n≤ω  (begin-equality
        sn                          ≈˘⟨ ω^-absorb-+  wf n  (< n) 
        ω ^ ε α + sn                ≈⟨ +-congʳ (ε-fp _) 
        ε α + sn                    ) 
      ω ^ (ε α + sn)                ≈⟨ ^-distribˡ-+-* _ _ _ 
      ω ^ ε α * ω ^ sn              ≡⟨⟩
      ω ^ ε α * ssn                 ≈⟨ *-congʳ (ε-fp _) 
      ε α * ssn                     ) 
    ω ^ (ε α * ssn)                 ≈˘⟨ ^-*-assoc _ _ _ 
    (ω ^ ε α) ^ ssn                 ≈⟨ ^-congʳ (ε-fp _) 
    ε α ^ ssn                       ≈⟨ ^-congˡ (ω^^[sε]n _) 
    ε α ^ (ε α ^^[ ω ] suc  n )  where
      wf :  n  WellFormed (ω ^^[ suc (ε α) ]  n )
      wf zero    = ε-wfp wfα
      wf (suc n) = ^-wfp ω-wellFormed  n<ω  (wf n)
      <  :  n  ε α < ω ^^[ suc (ε α) ]  n 
      < zero     = <s
      < (suc n)  =                  begin-strict
        ε α                         <⟨ < n 
        ω ^^[ suc (ε α) ]  n      ≤⟨ ^-incrˡ-≤ _ _  n<ω  
        ω ^ ω ^^[ suc (ε α) ]  n  

推广到 ω 项.

ωωω..εα+1=εαεα..ωω^{ω^{ω^{.^{.^{{ε_α}+1}}}}} = {ε_α}^{{ε_α}^{.^{.^ω}}}

  ω^^ω[sε] : ω ^^ω[ suc (ε α) ]  ε α ^^ω[ ω ]
  ω^^ω[sε] = begin-equality
    lim  n  ω ^^[ suc (ε α) ]  n )           ≈⟨ l≈ls incr 
    lim  n  ω ^^[ suc (ε α) ]  suc n )       ≈⟨ l≈ls (^-monoʳ-≤ ω  n≤ω  incr) 
    lim  n  ω ^^[ suc (ε α) ]  suc (suc n) ) ≈⟨ l≈l (ω^^[sε]n _) 
    lim  n  ε α ^^[ ω ]  suc n )             ≈˘⟨ l≈ls (^-incrˡ-≤ ω (ε α)) 
    lim  n  (ε α ^^[ ω ]  n ))                where
      incr : suc (ε α)  ω ^ suc (ε α)
      incr = ^-incrˡ-≤ (suc (ε α)) ω  n<ω 

于是我们得到了 ε 后继项的另一种表示.

εα+1=εαεαεα...ε_{α+1}={ε_α}^{{ε_α}^{{ε_α}^{.^{.^.}}}}

  εₛ : ε (suc α)  ε α ^^ω
  εₛ =                    begin-equality
    ε (suc α)             ≡⟨⟩
    ω ^^[ suc (ε α) ] ω   ≈⟨ ω^^ω[sε] 
    ε α ^^[ ω ] ω         ≈˘⟨ ^^≈^^[]ω _ _ εα≥ω  n≤ω  
    ε α ^^ω               

注意 这种表示只对 ε 成立而对 ζ, η, … 不存在.