{-# OPTIONS --cubical-compatible --safe #-}
module Data.Bool.Properties where
open import Algebra.Bundles
open import Algebra.Lattice.Bundles
import Algebra.Lattice.Properties.BooleanAlgebra as BooleanAlgebraProperties
open import Data.Bool.Base
open import Data.Empty
open import Data.Product.Base using (_×_; _,_; proj₁; proj₂)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_])
open import Function.Base using (_⟨_⟩_; const; id)
open import Function.Bundles hiding (LeftInverse; RightInverse; Inverse)
open import Induction.WellFounded using (WellFounded; Acc; acc)
open import Level using (Level; 0ℓ)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Structures
  using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder; IsStrictPartialOrder; IsStrictTotalOrder)
open import Relation.Binary.Bundles
  using (Setoid; DecSetoid; Poset; Preorder; TotalOrder; DecTotalOrder; StrictPartialOrder; StrictTotalOrder)
open import Relation.Binary.Definitions
  using (Decidable; Reflexive; Transitive; Antisymmetric; Minimum; Maximum; Total; Irrelevant; Irreflexive; Asymmetric; Trans; Trichotomous; tri≈; tri<; tri>; _Respects₂_)
open import Relation.Binary.PropositionalEquality.Core
open import Relation.Binary.PropositionalEquality.Properties
open import Relation.Nullary.Decidable.Core using (True; yes; no; fromWitness)
import Relation.Unary as U
open import Algebra.Definitions {A = Bool} _≡_
open import Algebra.Structures {A = Bool} _≡_
open import Algebra.Lattice.Structures {A = Bool} _≡_
open ≡-Reasoning
private
  variable
    a b : Level
    A : Set a
    B : Set b
infix 4 _≟_
_≟_ : Decidable {A = Bool} _≡_
true  ≟ true  = yes refl
false ≟ false = yes refl
true  ≟ false = no λ()
false ≟ true  = no λ()
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid Bool
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
≤-reflexive : _≡_ ⇒ _≤_
≤-reflexive refl = b≤b
≤-refl : Reflexive _≤_
≤-refl = ≤-reflexive refl
≤-trans : Transitive _≤_
≤-trans b≤b p   = p
≤-trans f≤t b≤b = f≤t
≤-antisym : Antisymmetric _≡_ _≤_
≤-antisym b≤b _ = refl
≤-minimum : Minimum _≤_ false
≤-minimum false = b≤b
≤-minimum true  = f≤t
≤-maximum : Maximum _≤_ true
≤-maximum false = f≤t
≤-maximum true  = b≤b
≤-total : Total _≤_
≤-total false b = inj₁ (≤-minimum b)
≤-total true  b = inj₂ (≤-maximum b)
infix 4 _≤?_
_≤?_ : Decidable _≤_
false ≤? b     = yes (≤-minimum b)
true  ≤? false = no λ ()
true  ≤? true  = yes b≤b
≤-irrelevant : Irrelevant _≤_
≤-irrelevant {_}     f≤t f≤t = refl
≤-irrelevant {false} b≤b b≤b = refl
≤-irrelevant {true}  b≤b b≤b = refl
≤-isPreorder : IsPreorder _≡_ _≤_
≤-isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = ≤-reflexive
  ; trans         = ≤-trans
  }
≤-isPartialOrder : IsPartialOrder _≡_ _≤_
≤-isPartialOrder = record
  { isPreorder = ≤-isPreorder
  ; antisym    = ≤-antisym
  }
≤-isTotalOrder : IsTotalOrder _≡_ _≤_
≤-isTotalOrder = record
  { isPartialOrder = ≤-isPartialOrder
  ; total          = ≤-total
  }
≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_
≤-isDecTotalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  ; _≟_          = _≟_
  ; _≤?_         = _≤?_
  }
≤-poset : Poset 0ℓ 0ℓ 0ℓ
≤-poset = record
  { isPartialOrder = ≤-isPartialOrder
  }
≤-preorder : Preorder 0ℓ 0ℓ 0ℓ
≤-preorder = record
  { isPreorder = ≤-isPreorder
  }
≤-totalOrder : TotalOrder 0ℓ 0ℓ 0ℓ
≤-totalOrder = record
  { isTotalOrder = ≤-isTotalOrder
  }
≤-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≤-decTotalOrder = record
  { isDecTotalOrder = ≤-isDecTotalOrder
  }
<-irrefl : Irreflexive _≡_ _<_
<-irrefl refl ()
<-asym : Asymmetric _<_
<-asym f<t ()
<-trans : Transitive _<_
<-trans f<t ()
<-transʳ : Trans _≤_ _<_ _<_
<-transʳ b≤b f<t = f<t
<-transˡ : Trans _<_ _≤_ _<_
<-transˡ f<t b≤b = f<t
<-cmp : Trichotomous _≡_ _<_
<-cmp false false = tri≈ (λ()) refl  (λ())
<-cmp false true  = tri< f<t   (λ()) (λ())
<-cmp true  false = tri> (λ()) (λ()) f<t
<-cmp true  true  = tri≈ (λ()) refl  (λ())
infix 4 _<?_
_<?_ : Decidable _<_
false <? false = no  (λ())
false <? true  = yes f<t
true  <? _     = no  (λ())
<-resp₂-≡ : _<_ Respects₂ _≡_
<-resp₂-≡ = subst (_ <_) , subst (_< _)
<-irrelevant : Irrelevant _<_
<-irrelevant f<t f<t = refl
<-wellFounded : WellFounded _<_
<-wellFounded _ = acc <-acc
  where
    <-acc : ∀ {x y} → y < x → Acc _<_ y
    <-acc f<t = acc λ ()
<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
<-isStrictPartialOrder = record
  { isEquivalence = isEquivalence
  ; irrefl        = <-irrefl
  ; trans         = <-trans
  ; <-resp-≈      = <-resp₂-≡
  }
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  ; compare              = <-cmp
  }
<-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ
<-strictPartialOrder = record
  { isStrictPartialOrder = <-isStrictPartialOrder
  }
<-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ
<-strictTotalOrder = record
  { isStrictTotalOrder = <-isStrictTotalOrder
  }
∨-assoc : Associative _∨_
∨-assoc true  y z = refl
∨-assoc false y z = refl
∨-comm : Commutative _∨_
∨-comm true  true  = refl
∨-comm true  false = refl
∨-comm false true  = refl
∨-comm false false = refl
∨-identityˡ : LeftIdentity false _∨_
∨-identityˡ _ = refl
∨-identityʳ : RightIdentity false _∨_
∨-identityʳ false = refl
∨-identityʳ true  = refl
∨-identity : Identity false _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ
∨-zeroˡ : LeftZero true _∨_
∨-zeroˡ _ = refl
∨-zeroʳ : RightZero true _∨_
∨-zeroʳ false = refl
∨-zeroʳ true  = refl
∨-zero : Zero true _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
∨-inverseˡ : LeftInverse true not _∨_
∨-inverseˡ false = refl
∨-inverseˡ true  = refl
∨-inverseʳ : RightInverse true not _∨_
∨-inverseʳ x = ∨-comm x (not x) ⟨ trans ⟩ ∨-inverseˡ x
∨-inverse : Inverse true not _∨_
∨-inverse = ∨-inverseˡ , ∨-inverseʳ
∨-idem : Idempotent _∨_
∨-idem false = refl
∨-idem true  = refl
∨-sel : Selective _∨_
∨-sel false y = inj₂ refl
∨-sel true y  = inj₁ refl
∨-conicalˡ : LeftConical false _∨_
∨-conicalˡ false false _ = refl
∨-conicalʳ : RightConical false _∨_
∨-conicalʳ false false _ = refl
∨-conical : Conical false _∨_
∨-conical = ∨-conicalˡ , ∨-conicalʳ
∨-isMagma : IsMagma _∨_
∨-isMagma = record
  { isEquivalence = isEquivalence
  ; ∙-cong        = cong₂ _∨_
  }
∨-magma : Magma 0ℓ 0ℓ
∨-magma = record
  { isMagma = ∨-isMagma
  }
∨-isSemigroup : IsSemigroup _∨_
∨-isSemigroup = record
  { isMagma = ∨-isMagma
  ; assoc   = ∨-assoc
  }
∨-semigroup : Semigroup 0ℓ 0ℓ
∨-semigroup = record
  { isSemigroup = ∨-isSemigroup
  }
∨-isBand : IsBand _∨_
∨-isBand = record
  { isSemigroup = ∨-isSemigroup
  ; idem        = ∨-idem
  }
∨-band : Band 0ℓ 0ℓ
∨-band = record
  { isBand = ∨-isBand
  }
∨-isSemilattice : IsSemilattice _∨_
∨-isSemilattice = record
  { isBand = ∨-isBand
  ; comm   = ∨-comm
  }
∨-semilattice : Semilattice 0ℓ 0ℓ
∨-semilattice = record
  { isSemilattice = ∨-isSemilattice
  }
∨-isMonoid : IsMonoid _∨_ false
∨-isMonoid = record
  { isSemigroup = ∨-isSemigroup
  ; identity = ∨-identity
  }
∨-isCommutativeMonoid : IsCommutativeMonoid _∨_ false
∨-isCommutativeMonoid = record
  { isMonoid = ∨-isMonoid
  ; comm = ∨-comm
  }
∨-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
∨-commutativeMonoid = record
  { isCommutativeMonoid = ∨-isCommutativeMonoid
  }
∨-isIdempotentCommutativeMonoid :
  IsIdempotentCommutativeMonoid _∨_ false
∨-isIdempotentCommutativeMonoid = record
  { isCommutativeMonoid = ∨-isCommutativeMonoid
  ; idem                = ∨-idem
  }
∨-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ
∨-idempotentCommutativeMonoid = record
  { isIdempotentCommutativeMonoid = ∨-isIdempotentCommutativeMonoid
  }
∧-assoc : Associative _∧_
∧-assoc true  y z = refl
∧-assoc false y z = refl
∧-comm : Commutative _∧_
∧-comm true  true  = refl
∧-comm true  false = refl
∧-comm false true  = refl
∧-comm false false = refl
∧-identityˡ : LeftIdentity true _∧_
∧-identityˡ _ = refl
∧-identityʳ : RightIdentity true _∧_
∧-identityʳ false = refl
∧-identityʳ true  = refl
∧-identity : Identity true _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ
∧-zeroˡ : LeftZero false _∧_
∧-zeroˡ _ = refl
∧-zeroʳ : RightZero false _∧_
∧-zeroʳ false = refl
∧-zeroʳ true  = refl
∧-zero : Zero false _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∧-inverseˡ : LeftInverse false not _∧_
∧-inverseˡ false = refl
∧-inverseˡ true = refl
∧-inverseʳ : RightInverse false not _∧_
∧-inverseʳ x = ∧-comm x (not x) ⟨ trans ⟩ ∧-inverseˡ x
∧-inverse : Inverse false not _∧_
∧-inverse = ∧-inverseˡ , ∧-inverseʳ
∧-idem : Idempotent _∧_
∧-idem false = refl
∧-idem true  = refl
∧-sel : Selective _∧_
∧-sel false y = inj₁ refl
∧-sel true y  = inj₂ refl
∧-conicalˡ : LeftConical true _∧_
∧-conicalˡ true true _ = refl
∧-conicalʳ : RightConical true _∧_
∧-conicalʳ true true _ = refl
∧-conical : Conical true _∧_
∧-conical = ∧-conicalˡ , ∧-conicalʳ
∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ true  y z = refl
∧-distribˡ-∨ false y z = refl
∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_
∧-distribʳ-∨ x y z = begin
  (y ∨ z) ∧ x     ≡⟨ ∧-comm (y ∨ z) x ⟩
  x ∧ (y ∨ z)     ≡⟨ ∧-distribˡ-∨ x y z ⟩
  x ∧ y ∨ x ∧ z   ≡⟨ cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩
  y ∧ x ∨ z ∧ x   ∎
∧-distrib-∨ : _∧_ DistributesOver _∨_
∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨
∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_
∨-distribˡ-∧ true  y z = refl
∨-distribˡ-∧ false y z = refl
∨-distribʳ-∧ : _∨_ DistributesOverʳ _∧_
∨-distribʳ-∧ x y z = begin
  (y ∧ z) ∨ x        ≡⟨ ∨-comm (y ∧ z) x ⟩
  x ∨ (y ∧ z)        ≡⟨ ∨-distribˡ-∧ x y z ⟩
  (x ∨ y) ∧ (x ∨ z)  ≡⟨ cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩
  (y ∨ x) ∧ (z ∨ x)  ∎
∨-distrib-∧ : _∨_ DistributesOver _∧_
∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧
∧-abs-∨ : _∧_ Absorbs _∨_
∧-abs-∨ true  y = refl
∧-abs-∨ false y = refl
∨-abs-∧ : _∨_ Absorbs _∧_
∨-abs-∧ true  y = refl
∨-abs-∧ false y = refl
∨-∧-absorptive : Absorptive _∨_ _∧_
∨-∧-absorptive = ∨-abs-∧ , ∧-abs-∨
∧-isMagma : IsMagma _∧_
∧-isMagma = record
  { isEquivalence = isEquivalence
  ; ∙-cong        = cong₂ _∧_
  }
∧-magma : Magma 0ℓ 0ℓ
∧-magma = record
  { isMagma = ∧-isMagma
  }
∧-isSemigroup : IsSemigroup _∧_
∧-isSemigroup = record
  { isMagma = ∧-isMagma
  ; assoc   = ∧-assoc
  }
∧-semigroup : Semigroup 0ℓ 0ℓ
∧-semigroup = record
  { isSemigroup = ∧-isSemigroup
  }
∧-isBand : IsBand _∧_
∧-isBand = record
  { isSemigroup = ∧-isSemigroup
  ; idem        = ∧-idem
  }
∧-band : Band 0ℓ 0ℓ
∧-band = record
  { isBand = ∧-isBand
  }
∧-isSemilattice : IsSemilattice _∧_
∧-isSemilattice = record
  { isBand = ∧-isBand
  ; comm   = ∧-comm
  }
∧-semilattice : Semilattice 0ℓ 0ℓ
∧-semilattice = record
  { isSemilattice = ∧-isSemilattice
  }
∧-isMonoid : IsMonoid _∧_ true
∧-isMonoid = record
  { isSemigroup = ∧-isSemigroup
  ; identity = ∧-identity
  }
∧-isCommutativeMonoid : IsCommutativeMonoid _∧_ true
∧-isCommutativeMonoid = record
  { isMonoid = ∧-isMonoid
  ; comm = ∧-comm
  }
∧-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
∧-commutativeMonoid = record
  { isCommutativeMonoid = ∧-isCommutativeMonoid
  }
∧-isIdempotentCommutativeMonoid :
  IsIdempotentCommutativeMonoid _∧_ true
∧-isIdempotentCommutativeMonoid = record
  { isCommutativeMonoid = ∧-isCommutativeMonoid
  ; idem = ∧-idem
  }
∧-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ
∧-idempotentCommutativeMonoid = record
  { isIdempotentCommutativeMonoid = ∧-isIdempotentCommutativeMonoid
  }
∨-∧-isSemiring : IsSemiring _∨_ _∧_ false true
∨-∧-isSemiring = record
  { isSemiringWithoutAnnihilatingZero = record
    { +-isCommutativeMonoid = ∨-isCommutativeMonoid
    ; *-cong = cong₂ _∧_
    ; *-assoc = ∧-assoc
    ; *-identity = ∧-identity
    ; distrib = ∧-distrib-∨
    }
  ; zero = ∧-zero
  }
∨-∧-isCommutativeSemiring
  : IsCommutativeSemiring _∨_ _∧_ false true
∨-∧-isCommutativeSemiring = record
  { isSemiring = ∨-∧-isSemiring
  ; *-comm = ∧-comm
  }
∨-∧-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
∨-∧-commutativeSemiring = record
  { _+_                   = _∨_
  ; _*_                   = _∧_
  ; 0#                    = false
  ; 1#                    = true
  ; isCommutativeSemiring = ∨-∧-isCommutativeSemiring
  }
∧-∨-isSemiring : IsSemiring _∧_ _∨_ true false
∧-∨-isSemiring = record
  { isSemiringWithoutAnnihilatingZero = record
    { +-isCommutativeMonoid = ∧-isCommutativeMonoid
    ; *-cong = cong₂ _∨_
    ; *-assoc = ∨-assoc
    ; *-identity = ∨-identity
    ; distrib = ∨-distrib-∧
    }
  ; zero = ∨-zero
  }
∧-∨-isCommutativeSemiring
  : IsCommutativeSemiring _∧_ _∨_ true false
∧-∨-isCommutativeSemiring = record
  { isSemiring = ∧-∨-isSemiring
  ; *-comm = ∨-comm
  }
∧-∨-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
∧-∨-commutativeSemiring = record
  { _+_                   = _∧_
  ; _*_                   = _∨_
  ; 0#                    = true
  ; 1#                    = false
  ; isCommutativeSemiring = ∧-∨-isCommutativeSemiring
  }
∨-∧-isLattice : IsLattice _∨_ _∧_
∨-∧-isLattice = record
  { isEquivalence = isEquivalence
  ; ∨-comm        = ∨-comm
  ; ∨-assoc       = ∨-assoc
  ; ∨-cong        = cong₂ _∨_
  ; ∧-comm        = ∧-comm
  ; ∧-assoc       = ∧-assoc
  ; ∧-cong        = cong₂ _∧_
  ; absorptive    = ∨-∧-absorptive
  }
∨-∧-lattice : Lattice 0ℓ 0ℓ
∨-∧-lattice = record
  { isLattice = ∨-∧-isLattice
  }
∨-∧-isDistributiveLattice : IsDistributiveLattice _∨_ _∧_
∨-∧-isDistributiveLattice = record
  { isLattice   = ∨-∧-isLattice
  ; ∨-distrib-∧ = ∨-distrib-∧
  ; ∧-distrib-∨ = ∧-distrib-∨
  }
∨-∧-distributiveLattice : DistributiveLattice 0ℓ 0ℓ
∨-∧-distributiveLattice = record
  { isDistributiveLattice = ∨-∧-isDistributiveLattice
  }
∨-∧-isBooleanAlgebra : IsBooleanAlgebra _∨_ _∧_ not true false
∨-∧-isBooleanAlgebra = record
  { isDistributiveLattice = ∨-∧-isDistributiveLattice
  ; ∨-complement          = ∨-inverse
  ; ∧-complement          = ∧-inverse
  ; ¬-cong                = cong not
  }
∨-∧-booleanAlgebra : BooleanAlgebra 0ℓ 0ℓ
∨-∧-booleanAlgebra = record
  { isBooleanAlgebra = ∨-∧-isBooleanAlgebra
  }
not-involutive : Involutive not
not-involutive true  = refl
not-involutive false = refl
not-injective : ∀ {x y} → not x ≡ not y → x ≡ y
not-injective {false} {false} nx≢ny = refl
not-injective {true}  {true}  nx≢ny = refl
not-¬ : ∀ {x y} → x ≡ y → x ≢ not y
not-¬ {true}  refl ()
not-¬ {false} refl ()
¬-not : ∀ {x y} → x ≢ y → x ≡ not y
¬-not {true}  {true}  x≢y = ⊥-elim (x≢y refl)
¬-not {true}  {false} _   = refl
¬-not {false} {true}  _   = refl
¬-not {false} {false} x≢y = ⊥-elim (x≢y refl)
xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y)
xor-is-ok true  y = refl
xor-is-ok false y = sym (∧-identityʳ _)
true-xor : ∀ x → true xor x ≡ not x
true-xor false = refl
true-xor true  = refl
xor-same : ∀ x → x xor x ≡ false
xor-same false = refl
xor-same true  = refl
not-distribˡ-xor : ∀ x y → not (x xor y) ≡ (not x) xor y
not-distribˡ-xor false y = refl
not-distribˡ-xor true  y = not-involutive _
not-distribʳ-xor : ∀ x y → not (x xor y) ≡ x xor (not y)
not-distribʳ-xor false y = refl
not-distribʳ-xor true  y = refl
xor-assoc : Associative _xor_
xor-assoc true  y z = sym (not-distribˡ-xor y z)
xor-assoc false y z = refl
xor-comm : Commutative _xor_
xor-comm false false = refl
xor-comm false true  = refl
xor-comm true  false = refl
xor-comm true  true  = refl
xor-identityˡ : LeftIdentity false _xor_
xor-identityˡ _ = refl
xor-identityʳ : RightIdentity false _xor_
xor-identityʳ false = refl
xor-identityʳ true  = refl
xor-identity : Identity false _xor_
xor-identity = xor-identityˡ , xor-identityʳ
xor-inverseˡ : LeftInverse true not _xor_
xor-inverseˡ false = refl
xor-inverseˡ true = refl
xor-inverseʳ : RightInverse true not _xor_
xor-inverseʳ x = xor-comm x (not x) ⟨ trans ⟩ xor-inverseˡ x
xor-inverse : Inverse true not _xor_
xor-inverse = xor-inverseˡ , xor-inverseʳ
∧-distribˡ-xor : _∧_ DistributesOverˡ _xor_
∧-distribˡ-xor false y z = refl
∧-distribˡ-xor true  y z = refl
∧-distribʳ-xor : _∧_ DistributesOverʳ _xor_
∧-distribʳ-xor x false z    = refl
∧-distribʳ-xor x true false = sym (xor-identityʳ x)
∧-distribʳ-xor x true true  = sym (xor-same x)
∧-distrib-xor : _∧_ DistributesOver _xor_
∧-distrib-xor = ∧-distribˡ-xor , ∧-distribʳ-xor
xor-annihilates-not : ∀ x y → (not x) xor (not y) ≡ x xor y
xor-annihilates-not false y = not-involutive _
xor-annihilates-not true  y = refl
xor-∧-commutativeRing : CommutativeRing 0ℓ 0ℓ
xor-∧-commutativeRing = ⊕-∧-commutativeRing
  where
  open BooleanAlgebraProperties ∨-∧-booleanAlgebra
  open XorRing _xor_ xor-is-ok
if-float : ∀ (f : A → B) b {x y} →
           f (if b then x else y) ≡ (if b then f x else f y)
if-float _ true  = refl
if-float _ false = refl
open Relation.Nullary.Decidable.Core public using (T?)
T-≡ : ∀ {x} → T x ⇔ x ≡ true
T-≡ {false} = mk⇔ (λ ())       (λ ())
T-≡ {true}  = mk⇔ (const refl) (const _)
T-not-≡ : ∀ {x} → T (not x) ⇔ x ≡ false
T-not-≡ {false} = mk⇔ (const refl) (const _)
T-not-≡ {true}  = mk⇔ (λ ())       (λ ())
T-∧ : ∀ {x y} → T (x ∧ y) ⇔ (T x × T y)
T-∧ {true}  {true}  = mk⇔ (const (_ , _)) (const _)
T-∧ {true}  {false} = mk⇔ (λ ())          proj₂
T-∧ {false} {_}     = mk⇔ (λ ())          proj₁
T-∨ : ∀ {x y} → T (x ∨ y) ⇔ (T x ⊎ T y)
T-∨ {true}  {_}     = mk⇔ inj₁ (const _)
T-∨ {false} {true}  = mk⇔ inj₂ (const _)
T-∨ {false} {false} = mk⇔ inj₁ [ id , id ]
T-irrelevant : U.Irrelevant T
T-irrelevant {true}  _  _  = refl
T?-diag : ∀ b → T b → True (T? b)
T?-diag b = fromWitness
⇔→≡ : {x y z : Bool} → x ≡ z ⇔ y ≡ z → x ≡ y
⇔→≡ {true } {true }         hyp = refl
⇔→≡ {true } {false} {true } hyp = sym (Equivalence.to hyp refl)
⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp refl
⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp refl
⇔→≡ {false} {true } {false} hyp = sym (Equivalence.to hyp refl)
⇔→≡ {false} {false}         hyp = refl
push-function-into-if = if-float
{-# WARNING_ON_USAGE push-function-into-if
"Warning: push-function-into-if was deprecated in v2.0.
Please use if-float instead."
#-}