{-# OPTIONS --cubical --safe #-}
module CubicalExt.Iff where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels using (hProp; isProp→; isPropΣ)
open import Cubical.Foundations.Isomorphism using (iso; isoToEquiv; isoToPath)
open import Cubical.Foundations.Structure using (⟨_⟩)
open import Cubical.Functions.Logic using (∥_∥ₚ; ⇒∶_⇐∶_)
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Cubical.HITs.PropositionalTruncation using (∥_∥₁; ∣_∣₁; squash₁; rec; map)
open import Cubical.Reflection.RecordEquiv using (declareRecordIsoΣ)
private variable
ℓ ℓ' : Level
A B C D : Type ℓ
f g : A → Type ℓ
P Q : hProp ℓ
infix 3 _↔_
record _↔_ (From : Type ℓ) (To : Type ℓ') : Type (ℓ-max ℓ ℓ') where
field
to : From → To
from : To → From
open _↔_ public
infix 9 →:_←:_ ←:_→:_
→:_←:_ : (A → B) → (B → A) → A ↔ B
→: to ←: from = record { from = from ; to = to }
←:_→:_ : (B → A) → (A → B) → A ↔ B
←: from →: to = record { from = from ; to = to }
↔-refl : A ↔ A
↔-refl = →: idfun _ ←: idfun _
↔-sym : A ↔ B → B ↔ A
↔-sym A↔B = →: from A↔B ←: to A↔B
↔-trans : A ↔ B → B ↔ C → A ↔ C
↔-trans A↔B B↔C = →: to B↔C ∘ to A↔B ←: from A↔B ∘ from B↔C
≡-↔-trans : A ≡ B → B ↔ C → A ↔ C
≡-↔-trans A≡B B↔C = subst (_↔ _) (sym A≡B) B↔C
↔-≡-trans : A ↔ B → B ≡ C → A ↔ C
↔-≡-trans A↔B B≡C = subst (_ ↔_) B≡C A↔B
infixr 2 _↔⟨_⟩_ _↔˘⟨_⟩_ _↔≡⟨_⟩_ _↔≡˘⟨_⟩_ _↔⟨⟩_
infix 3 _↔∎
_↔⟨_⟩_ : (A : Type ℓ) → A ↔ B → B ↔ C → A ↔ C
_ ↔⟨ A↔B ⟩ B↔C = ↔-trans A↔B B↔C
_↔˘⟨_⟩_ : (A : Type ℓ) → B ↔ A → B ↔ C → A ↔ C
_ ↔˘⟨ B↔A ⟩ B↔C = ↔-trans (↔-sym B↔A) B↔C
_↔≡⟨_⟩_ : (A : Type ℓ) → A ≡ B → B ↔ C → A ↔ C
_ ↔≡⟨ A≡B ⟩ B↔C = ≡-↔-trans A≡B B↔C
_↔≡˘⟨_⟩_ : (A : Type ℓ) → B ≡ A → B ↔ C → A ↔ C
_ ↔≡˘⟨ B≡A ⟩ B↔C = ≡-↔-trans (sym B≡A) B↔C
_↔⟨⟩_ : (A : Type ℓ) → A ↔ B → A ↔ B
_ ↔⟨⟩ A↔B = A↔B
_↔∎ : (A : Type ℓ) → A ↔ A
_ ↔∎ = ↔-refl
unquoteDecl iffIsoΣ = declareRecordIsoΣ iffIsoΣ (quote _↔_)
isProp↔ : isProp A → isProp B → isProp (A ↔ B)
isProp↔ propA propB = subst (λ X → isProp X) (sym (isoToPath iffIsoΣ)) $
isPropΣ (isProp→ propB) λ _ → isProp→ propA
∥∥-↔ : ∥ A ↔ B ∥₁ → ∥ A ∥₁ ↔ ∥ B ∥₁
∥∥-↔ = rec (isProp↔ squash₁ squash₁) λ iff →
→: rec squash₁ (λ x → ∣ to iff x ∣₁)
←: rec squash₁ (λ x → ∣ from iff x ∣₁)
hPropExt : ⟨ P ⟩ ↔ ⟨ Q ⟩ → P ≡ Q
hPropExt iff = ⇒∶ to iff ⇐∶ from iff
hPropExt⁻ : P ≡ Q → ⟨ P ⟩ ↔ ⟨ Q ⟩
hPropExt⁻ {P = P} P≡Q = subst (λ X → ⟨ P ⟩ ↔ ⟨ X ⟩) P≡Q ↔-refl
hPropTruncExt : A ↔ B → ∥ A ∥ₚ ≡ ∥ B ∥ₚ
hPropTruncExt iff = Σ≡Prop (λ _ → isPropIsProp) $ isoToPath $ iso
(map $ to iff) (map $ from iff) (λ x → squash₁ _ x) (λ x → squash₁ _ x)