{-# OPTIONS --cubical --safe #-}

module CubicalExt.Iff where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels using (hProp; isProp→; isPropΣ)
open import Cubical.Foundations.Isomorphism using (iso; isoToEquiv; isoToPath)
open import Cubical.Foundations.Structure using (⟨_⟩)
open import Cubical.Functions.Logic using (∥_∥ₚ; ⇒∶_⇐∶_)
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Cubical.HITs.PropositionalTruncation using (∥_∥₁; ∣_∣₁; squash₁; rec; map)
open import Cubical.Reflection.RecordEquiv using (declareRecordIsoΣ)

private variable
   ℓ' : Level
  A B C D : Type 
  f g : A  Type 
  P Q : hProp 

--------------------------------------------------------------------------------
-- Bi-implication (iff) of Type (which has a seperate proof of prop-hood)

infix 3 _↔_
record _↔_ (From : Type ) (To : Type ℓ') : Type (ℓ-max  ℓ') where
  field
    to   : From  To
    from : To  From

open _↔_ public

--------------------------------------------------------------------------------
-- Mixfix notations for iff construction

infix 9 →:_←:_ ←:_→:_

→:_←:_ : (A  B)  (B  A)  A  B
→: to ←: from = record { from = from ; to = to }

←:_→:_ : (B  A)  (A  B)  A  B
←: from →: to = record { from = from ; to = to }

--------------------------------------------------------------------------------
-- Iff is an equivalence relation

↔-refl : A  A
↔-refl = →: idfun _ ←: idfun _

↔-sym : A  B  B  A
↔-sym A↔B = →: from A↔B ←: to A↔B

↔-trans : A  B  B  C  A  C
↔-trans A↔B B↔C = →: to B↔C  to A↔B ←: from A↔B  from B↔C

--------------------------------------------------------------------------------
-- Interactions of iff with equality

≡-↔-trans : A  B  B  C  A  C
≡-↔-trans A≡B B↔C = subst (_↔ _) (sym A≡B) B↔C

↔-≡-trans : A  B  B  C  A  C
↔-≡-trans A↔B B≡C = subst (_ ↔_) B≡C A↔B

--------------------------------------------------------------------------------
-- Syntax for chains of iff reasoning

infixr 2 _↔⟨_⟩_ _↔˘⟨_⟩_ _↔≡⟨_⟩_ _↔≡˘⟨_⟩_ _↔⟨⟩_
infix  3 _↔∎

_↔⟨_⟩_ : (A : Type )  A  B  B  C  A  C
_ ↔⟨ A↔B  B↔C = ↔-trans A↔B B↔C

_↔˘⟨_⟩_ : (A : Type )  B  A  B  C  A  C
_ ↔˘⟨ B↔A  B↔C = ↔-trans (↔-sym B↔A) B↔C

_↔≡⟨_⟩_ : (A : Type )  A  B  B  C  A  C
_ ↔≡⟨ A≡B  B↔C = ≡-↔-trans A≡B B↔C

_↔≡˘⟨_⟩_ : (A : Type )  B  A  B  C  A  C
_ ↔≡˘⟨ B≡A  B↔C = ≡-↔-trans (sym B≡A) B↔C

_↔⟨⟩_ : (A : Type )  A  B  A  B
_ ↔⟨⟩ A↔B = A↔B

_↔∎ : (A : Type )  A  A
_ ↔∎ = ↔-refl

--------------------------------------------------------------------------------
-- Proof of prop-hood

unquoteDecl iffIsoΣ = declareRecordIsoΣ iffIsoΣ (quote _↔_)

isProp↔ : isProp A  isProp B  isProp (A  B)
isProp↔ propA propB = subst  X  isProp X) (sym (isoToPath iffIsoΣ)) $
  isPropΣ (isProp→ propB) λ _  isProp→ propA

∥∥-↔ :  A  B ∥₁   A ∥₁   B ∥₁
∥∥-↔ = rec (isProp↔ squash₁ squash₁) λ iff 
  →: rec squash₁  x   to   iff x ∣₁)
  ←: rec squash₁  x   from iff x ∣₁)

--------------------------------------------------------------------------------
-- Propositional extensionality

hPropExt :  P    Q   P  Q
hPropExt iff = ⇒∶ to iff ⇐∶ from iff

hPropExt⁻ : P  Q   P    Q 
hPropExt⁻ {P = P} P≡Q = subst  X   P    X ) P≡Q ↔-refl

hPropTruncExt : A  B   A ∥ₚ   B ∥ₚ
hPropTruncExt iff = Σ≡Prop  _  isPropIsProp) $ isoToPath $ iso
  (map $ to iff) (map $ from iff)  x  squash₁ _ x)  x  squash₁ _ x)